Equivariant Zariski structures
نویسنده
چکیده
A new class of noncommutative k-algebras (for k an algebraically closed field) is defined and shown to contain some important examples of quantum groups. To each such algebra, a first order theory is assigned describing models of a suitable corresponding geometric space. Model-theoretic results for these geometric structures are established (uncountable categoricity, quantifier elimination to the level of existential formulas) and that an appropriate dimension theory exists, making them Zariski structures.
منابع مشابه
Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves
We prove an equivariant Grothendieck-Ogg-Shafarevich formula. This formula may be viewed as an étale analogue of well-known formulas for Zariski sheaves which were proved by Ellingsrud/Lønsted and Nakajima and for which we give a new approach in this paper. Mathematics Subject Classification 2000. 14F20; 14L30; 14H30.
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملAnalytic Continuation of Equivariant Distributions
We establish a method for constructing equivariant distributions on smooth real algebraic varieties from equivariant distributions on Zariski open subsets. This is based on Bernstein’s theory of analytic continuation of holonomic distributions. We use this to construct H-equivariant functionals on principal series representations of G, where G is a real reductive group and H is an algebraic sub...
متن کاملSpectra, Spectra, Spectra – Tensor Triangular Spectra versus Zariski Spectra of Endomorphism Rings
We construct a natural continuous map from the triangular spectrum of a tensor triangulated category to the algebraic Zariski spectrum of the endomorphism ring of its unit object. We also consider graded and twisted versions of this construction. We prove that these maps are quite often surjective but far from injective in general. For instance, the stable homotopy category of finite spectra ha...
متن کامل2 00 1 Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves
The object of this paper is to develop and prove an equivariant Grothendieck-OggShafarevich formula. Let k be an algebraically closed field, X a connected smooth projective curve over k and G a finite subgroup of Aut(X/k) of order n. Furthermore, let l 6= char(k) be a prime and F a constructible Fl-sheaf on the étale site Xét which carries a G-action compatible with the given G-action on X. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 91 شماره
صفحات -
تاریخ انتشار 2015